科研动态

首页 > 科学研究 > 科研动态 > 正文

姬亚军博士团队在SCI期刊《Journal of Solid State Chemistry》发表论文

时间:2021-11-10 11:12:23 来源:英国威廉希尔公司 作者:闫军辉 阅读:

标题:Efficient activation of peroxymonosulfate by porous Co-doped LaFeO3 for organic pollutants degradation in water

作者:Yajun Ji, Yanping Xie, Lingyun Zheng, Feiya Xu

来源出版物:Journal of Solid State Chemistry2021年,297

DOI10.1016/j.jssc.2021.122077

出版年: 2021

文献类型:Article

语种:英文

摘要:Sulfate radical-based advanced oxidation technology has been considered one of the most effective methods to remove organic pollutants from water. In this study, porous Co-doped LaFeO3 catalysts were synthesized by the sol-gel method and applied in peroxymonosulfate (PMS) activation for organic pollutants degradation. The effects of catalyst dosage, PMS concentration, initial pH of the solution and radical scavenger on the degradation of Acid Red G (ARG) were systematically studied. The porous LaFeO3 showed higher specific surface area (27.62 m2/g) and pore volume (0.15 cm3/g) than the traditional LaFeO3 (7.83 m2/g and 0.11 cm3/g), resulting in higher activity. After doping Co, more oxygen vacancies generated. The catalytic activity of LaFe1-xCoxO3 was remarkably enhanced. ARG could be completely degraded in LaFe0.90Co0.10O3/PMS system within 10 min. The degradation rate was 51 times higher than that in the porous LaFeO3/PMS system. The superior activity can be attributed to the oxygen vacancies and synergistic effect of Co and Fe, which facilitated the activation of PMS and generated SO4•- and HO• It was SO4•- that mainly contributed to the degradation of ARG. The detailed degradation pathway was proposed, according to the intermediate products of ARG degradation. Besides, the degradation rate of ARG by the as-prepared catalyst exceeded 80% even after using for 5 times.

关键词:LaFe1-xCoxO3PeroxymonosulfateOrganic pollutantDegradation

影响因子:3.498

论文连接:https://doi.org/10.1016/j.jssc.2021.122077

 

编辑:闫军辉